QUANTIFYING DARK GAS

Di Li1,2, Duo Xu1, Carl Heiles3, Zhichen Pan1,2, and Ningyu Tang1

1National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012, China; dili@nao.cas.cn, xuduo117@bao.ac.cn
2Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, China
3Astronomy Department, University of California, Berkeley, CA 94720-3411

E-mail: dili@nao.cas.cn, xduo117@bao.ac.cn

(Received November 30, 2014; Revised May 31, 2015; Accepted June 30, 2015)

ABSTRACT

A growing body of evidence has been supporting the existence of so-called “dark molecular gas” (DMG), which is invisible in the most common tracer of molecular gas, i.e., CO rotational emission. DMG is believed to be the main gas component of the intermediate extinction region from \(A_v \sim 0.05-2 \), roughly corresponding to the self-shielding threshold of \(\text{H}_2 \) and \(\text{^{13}CO} \). To quantify DMG relative to \(\text{HI} \) and CO, we are pursuing three observational techniques: HI self-absorption, OH absorption, and THz \(\text{C}^+ \) emission.

In this paper, we focus on preliminary results from a CO and OH absorption survey of DMG candidates. Our analysis shows that the OH excitation temperature is close to that of the Galactic continuum background and that OH is a good DMG tracer co-existing with molecular hydrogen in regions without CO. Through systematic “absorption mapping” by the Square Kilometer Array (SKA) and ALMA, we will have unprecedented, comprehensive knowledge of the ISM components including DMG in terms of their temperature and density, which will impact our understanding of galaxy evolution and star formation profoundly.

Key words: ISM: dark gas; molecular gas; atomic gas; radio line

1. INTRODUCTION

Two relatively dense phases of the interstellar medium (ISM) are the atomic Cold Neutral Medium (CNM) traced by the the \(\text{H} \alpha \lambda 21\text{cm} \) hyperfine structure line and the ‘standard’ molecular clouds (\(\text{H}_2 \)) as traced by CO. CO is the most important tracer of molecular hydrogen, which remains largely invisible due to lack of emission in the temperature range of molecular ISM. Empirically, CO intensities have been used as an indicator of the total molecular mass in the Milky Way and in galaxies through the so-called “X-factor” with numerous well-known caveats. Gases in these two phases dominate the masses of star forming clouds on a galactic scale. The measured ISM gas mass from \(\text{H}_2 \) and CO is the foundation of many key quantities in understanding galaxy evolution and star formation, such as the star formation efficiency.

A growing body of evidence, however, indicates the existence of gas traced by neither HI nor CO. Comparative studies (e.g. de Vries et al. 1987) of Infrared Astronomy Satellite (IRAS) dust images and HI and CO gas maps revealed an apparent excess of dust emission. The Planck collaboration (2011) clearly show excess dust opacity (Fig.1) in the intermediate extinction range \(A_v \sim 0.05-2 \), roughly corresponding to the self-shielding threshold of \(\text{H}_2 \) and \(\text{^{13}CO} \). The missing gas, or rather, the undetected gas component is widely referred to as dark gas, popularized as a common term by Grenier et al. (2005). They found more diffuse gamma-ray emission observed by the Energetic Gamma Ray Experiment Telescope (EGRET) than what can be explained by cosmic-ray H-nuclei interaction (\(\text{H+X-factor^{*CO}} \)). Observations of the THz fine structure \(\text{C}^+ \) line also help reveal dark gas as the \(\text{C}^+ \) line strength in diffuse gas is stronger than what can be produced by collisional excitation with only HI gas (Langer et al. 2010).

A minority of the ISM community argued that dark gas could be explained by an underestimation of HI opacities (Fukui et al., 2014), which is in contrast with other recent works (Stanimirović et al., 2014). Due to the limited scope of this paper, we will only discuss the dark molecular gas (DMG) hereafter, or more specifically CO-dark molecular gas.

It is natural to infer from chemical and PDR models that molecular hydrogen would exist in regions where CO is not detectable. CO can be of low abundance due to photo-dissociation (Fig.2) in unshielded regions and/or can be heavily sub-thermal due to lack of collisions in diffuse gas. We strive to provide direct measurements and/or constraints of the physical conditions of DMG. Section 2 will focus on OH absorption. Section 3 introduces a CO survey toward background continuum...
DI LI

Figure 1. This figure is adopted from Figure 6 in Planck (2011). Correlation plots between the gas column density as traced by [HI+XCO*CO] and dust optical depth at IRAS 100 µm (upper left), HFI 857 GHz (upper right), 545 GHz (lower left) and 353 GHz (lower right). The color scale represents the density of sky pixels on a log scale. The blue dots show a binned average representation of the correlation. The red line shows the best linear correlation derived at low values. The vertical lines show the positions corresponding to Av = 0.37 mag and Av = 2.5 mag. A single CO X-factor $X_{\text{CO}} = 2.3 \times 10^{20} \text{H}_2 \text{cm}^{-2}/(\text{K km s}^{-1})$ was used.

Section 4 presents the combined analysis of CO and OH followed by a brief outlook of upcoming surveys in the final section.

2. WHERE IS THE HYDROXYL?

OH, or Hydroxyl, was the first interstellar molecule detected in radio bands (Weinreb et al. 1963). It can form quickly through a series of charge exchange reactions initiated by cosmic rays once H$_2$ is present (van Dishoeck & Black 1988). OH can also form on grains. One of the main chemical paths associated with CO after OH formation is

\[\text{OH} + \text{C}^+ \rightarrow \text{CO}^+ + \text{H}, \]
\[\text{CO}^+ + \text{H}_2 \rightarrow \text{HCO}^+ + \text{H}, \]
\[\text{HCO}^+ + e^- \rightarrow \text{CO} + \text{H}. \]

We should expect wide-spread and abundant OH along with HCO$^+$ and C$^+$. HCO$^+$ is accessible in millimeter bands. The main transition from C$^+$ is its fine structure transition in the 2 THz band, which is impossible to map from the ground. It is somewhat puzzling why large scale OH surveys of ISM have not been available in the half a century since its discovery. In fact, thousands of hours of Arecibo time have been spent on searches for OH in galaxies with mostly negative results (e.g. Schmelz & Baan, 1988).

In contrast, Dickey et al. (1981) found OH in absorption against high Galactic latitude continuum sources. Important and extensive confirming absorption measurements by Liszt & Lucas (1996) and Lucas & Liszt (1996) found that OH and HCO$^+$ are commonly observed against such sources. Lucas & Liszt (1996) found that \sim30% of continuum sources having HI in absorption exhibit HCO$^+$ in absorption. In light these results, the dearth of OH emission should be attributed to the excitation condition of OH rather than its abundance.

The observed antenna temperature T_A is

\[T_A = (T_{\text{ex}} - T_C)(1 - e^{-\tau}), \]

where $T_C \sim 3.5$ K is the continuum background temperature at L-band, composed of the CMB and galactic synchrotron emission. When T_{ex} approaches T_C, the apparent signal from certain line emission vanishes. Such gas, however, is suitable for absorption studies when the telescope is trained toward background sources with $T_C \gg T_{\text{ex}}$ as is the case when observing quasars and/or HII regions.

Heiles & Troland (2003) published the well-cited Millennium survey of 21-cm line absorption toward 79 continuum sources. The ON-OFF technique and Gaussian decomposition analysis allow them to provide credible measurements of the excitation temperature and density of HI components spreading through the Milky Way. Unpublished OH absorption data were taken simultaneously with the Millennium survey. Our preliminary analysis of these OH absorption data confirms the suspicion that T_{ex} of OH aggregates is comparable to the total continuum background temperature (CBR + Galactic), and thus renders OH undetectable in emission.

3. A MULTI-TRANSITION CO SURVEY OF MILLENNIUM SOURCES

We conducted a follow-up CO survey of all Millennium sight-lines with OH absorption. Toward 79 published Millennium survey sources, 43 sight-lines exhibit OH absorption. These 43 sources with OH absorption have been observed in ^{12}CO J=1-0 and 2-1, ^{13}CO J=1-0 and ^{18}O J=1-0. The 8 sources with strong ^{12}CO J=1-0 and 2-1 lines were also observed in the ^{12}CO J=3-2 transition.

The J=1-0 transition of ^{12}CO, ^{13}CO and ^{18}O were observed in March and May of 2013 and May of
Figure 3. The location of sources in galactic coordinates. Triangles represent sources without any absorption component in OH. Squares represent sources with absorption component in OH. Yellow dots represent sources without any detection of CO transitions. Red dots represent sources with CO transition components; these CO components correspond to all the absorption components in OH. Black dots represent sources with CO transition components, and these CO components correspond to some of the absorption components in OH, but there are no detectable CO transition corresponding to the rest of the absorption components in OH. We call these kind of sources “partial CO detection”.

2014 with the Purple Mountain Observatory Delingha (PMODLH) 13.7 m telescope, of the Chinese Academy of Sciences. The spectra were obtained in position switch mode and the reference position is selected from IRAS Sky Survey Atlas. With 1000 MHz bandwidth spectroscopy, the frequency resolution is 61 kHz, resulting in an approximately 0.18 km s\(^{-1}\) channel width.

The \(^{12}\)CO J = 2-1 and J = 3-2 data were taken with the Caltech Submillimeter Observatory (CSO) 10.4m on top of Mauna Kea in July, October and December of 2013. The velocity resolution for \(^{12}\)CO(J = 2-1) spectra is 0.16 km s\(^{-1}\). The velocity resolution for \(^{12}\)CO(J = 3-2) spectra is 0.11 km s\(^{-1}\) or 0.56 km s\(^{-1}\) due to a problem in spectroscopy.

The distribution of these spectra in the galactic coordinates is shown in Fig. 3.

The typical RMS of the \(^{12}\)CO J=1-0 observation is about 0.06K, which corresponds to a CO detection limit of 2.6 \(\times 10^{13}\) cm\(^{-2}\).

The astronomical software package Gildas/CLASS\(^2\) was used for baseline removal, combining spectra, and Gaussian fitting.

4. COMPARISON OF H\(_I\), OH, AND CO

We compare the Gaussian components seen in H\(_I\) absorption, OH absorption, and CO emission. A total of 115 Gaussian components were detected as specified in Heiles & Troland (2003). 52 of these gas components have OH absorption. The majority of these 52 have CO emission, except for 13 components, which are DMG candidates. There are no components with only CO emission and no OH absorption. Three representative

\[N_{OH} = \frac{8\pi k T_{ex} \nu_{1667}^{2}}{A_{1667} c^{3} h} \int \tau_{1667} dv \]

where \(A_{1667} = 7.778 \times 10^{-11} s^{-1}\) is the A-coefficient and \(T_{ex}\) is its excitation temperature calculated based on a recipe similar to that for the H\(_I\) absorption components in Heiles & Troland (2003).

The CO column densities were calculated for two categories. If only the J=1-0 transition of \(^{12}\)CO was detected, the optical depth is assumed to be small and the excitation temperature is assumed to be the same as that of OH. If both \(^{12}\)CO and \(^{13}\)CO were detected, we derive the optical depth and the excitation temperature based on multiple transitions and Local Thermodynamic Equilibrium (LTE) assumptions. The recipe for deriving CO column densities can be found in Li (2002).

The statistics of the gas column densities (Fig. 5) is consistent with the schematic picture presented in Fig. 3 and section 1. There is an apparent gas column density threshold for OH detection at around Av~0.05, above which OH and CO have similar distributions. OH turns out to be a good tracer of diffuse gas with ‘intermediate’ extinction, namely, between the self-shielding threshold for H\(_{2}\) and \(^{13}\)CO.

5. DISCUSSION

The expected location, abundance, and optical depth of OH should make it an excellent tracer of DMG. Due

\[^{1}\]http://irsa.ipac.caltech.edu/data/1SSA/
\[^{2}\]http://www.iram.fr/IRAMFR/GILDAS/
to insufficient collisions in diffuse gas, however, OH is hard to detect in emission. This is likely the main reason why a galactic scale or even any large-scale OH map has not been accomplished. To realize its potential in quantifying dark gas throughout the ISM, upcoming radio telescopes will be needed to conduct comprehensive absorption surveys. The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is expected to start operation in late 2016. The unprecedented sensitivity of FAST and its early science instruments (Li et al. 2013) should make feasible a HI+OH absorption survey, in the mode of the Millennium survey, but with 10 times more sources. The SKA1 will have the survey speed and sensitivity to measure gas absorption with a source density between a few to a few tens per square degree (McClure-Griffiths et al., 2014), which means that an all sky “absorption-image” is feasible and we will have ISM temperatures and densities everywhere! Based on similar excitation and sensitivity considerations, ALMA is a powerful instrument for obtaining systematic and sensitive absorption measurements of millimeter lines in diffuse gas. CO and HCO+ in diffuse gas, in particular, will be much better constrained in terms of excitation temperature and column densities through ALMA absorption observations than emission measurements. Combining both radio and millimeter absorption surveys in the coming decade, we will quantify DMG and provide definitive answers to questions like the global star formation efficiency.

This work is supported in part by National Basic Research Program of China (973 program) No. 2012CB821800, NSFC No. 11373038, and Chinese Academy of Sciences Grant No. XDBB0900000. We thank Lei Qian for his great help in running 12CO J = 3 - 2 observation at the CSO site. We also thank Lei Zhu for his help in CSO observations. The 3×3 multibeam sideband separation superconductor-insulator-superconductor (SIS) receiver with sideband separation (Zuo et al., 2011; Shan et al., 2012) was used for observation. The 12CO, 13CO and C18O spectra was obtained with position switch mode, the reference position is selected from IRAS Sky Survey Atlas3. The authors appreciate all the staff members of the PMODLH for their help during the observation. This material is partly based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology.

REFERENCES
Li, D., 2002, Massive Cores in the Orion Molecular Cloud, Thesis (PhD). CORNELL UNIVERSITY, Source DAI-B 63/04, 201
McClure-Griffiths, N. M., 2014, in prep. for Proceedings of Science “Advancing Astrophysics with the Square Kilometre Array”

\(^3\)http://irsa.ipac.caltech.edu/data/ISSA/