LOCATIONS OF OUT-OF-PLANE EQUILIBRIUM POINTS IN THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM UNDER RADIATION AND OBLATENESS EFFECTS

IBNU NURUL HUDA¹, BUDI DERMAWAN², RILDO WARYUDI WIBOWO³, TAUFIQ HIDAYAT², JUDHISTIRA ARYA UTAMA⁴, DENNY MANDEY⁵, AND IHSAN TAMPUBOLON¹

¹Undergraduate Program in Astronomy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
²Astronomy Research Division, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
³Graduate Program in Computational Science, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
⁴Graduate Program in Astronomy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia

E-mail: ibnu.nurul@students.itb.ac.id
(Received November 30, 2014; Revised May 31, 2015; Accepted June 30, 2015)

ABSTRACT

This study deals with the generalization of the Elliptic Restricted Three-Body Problem (ER3BP) by considering the effects of radiation and oblate spheroid primaries. This may illustrate a gas giant exoplanet orbiting its host star with eccentric orbit. In the three dimensional case, this generalization may possess two additional equilibrium points (L₆,₇, out-of-plane). We determine the existence of L₆,₇ in ER3BP under the effects of radiation (bigger primary) and oblateness (small primary). We analytically derive the locations of L₆,₇ and assume initial approximations of (μ₁ ± √3A₂), where μ and A₂ are the mass parameter and oblateness factor, respectively. The fixed locations are then determined. Our results show that the locations of L₆,₇ are periodic and affected by A₂ and the radiation factor (q₁).

Key words: elliptic restricted three-body problem: out-of-plane: oblate spheroid: radiation

1. INTRODUCTION

The Classical Restricted Three-Body Problem (R3BP) has been generalized to include additional effects. The generalization of R3BP yields equilibrium points located out of the orbital plane (out-of-plane, L₆,₇) (Douskos & Markellos, 2006). L₆,₇ also have been found in the generalized Elliptic Restricted Three-Body Problem (ER3BP) (Singh & Umar, 2012). We study the locations of L₆,₇ in the generalized ER3BP when considering effects of radiation only in the bigger primary (radiation factor: q₁ ≠ 1, q₂ = 1) and an oblate spheroid only for the smaller primary (oblateness factor: A₁ = 0, A₂ ≠ 0). This study is applicable for the determination of L₆,₇ locations in exoplanetary systems which have a gas giant planet.

2. EQUATIONS OF MOTION

Let m₁ and m₂ be the masses of the primaries (m₁ > m₂). In the rotational frame, the coordinates of the third infinitesimal object are (ξ, η, ζ), and of the primaries are (ξ₁, η₁, ζ₁), and (ξ₂, η₂, ζ₂). The unit of time is chosen to make the gravitational constant G = 1. We use qᵢ and Aᵢ to represent the radiation and oblateness coefficients of the bigger (i = 1) and smaller (i = 2) primaries, respectively, such that

\[A_i = \frac{AE_i^2 - AP_i^2}{5R_i^2}, \quad q_i = 1 - \frac{F_{p_i}}{F_{g_i}}, \]

with 0 < A₁ < 1 and 0 < 1 - q₁ < 1. AEᵢ and APᵢ are the dimensional equatorial and polar radii, Rᵢ is the effective radius, and Fᵢ and F₡ are the radiation pressure and gravitational attraction forces. In this work we consider the case where only the bigger primary has a source of radiation (q₁ ≠ 1, q₂ = 1) and the smaller primary is an oblate spheroid body (A₁ = 0, A₂ ≠ 0). The equations of motion of the third object in a barycentric and dimensionless coordinate system (\(\xi = \frac{\xi}{r}, \eta = \frac{\eta}{r}, \zeta = \frac{\zeta}{r} \)) due to the combined effect of oblateness and radiation are

\[\ddot{\xi} - 2\dot{\eta} = V_\xi, \quad \ddot{\eta} + 2\ddot{\xi} = V_\eta, \quad \ddot{\zeta} = V_\zeta, \quad (1) \]

where

\[V = (1 + \cos f)^{-1} \left[\frac{1}{2} \left(\ddot{\xi}^2 + \ddot{\eta}^2 - 2f \ddot{\xi} \ddot{\eta} \cos f \right) + \frac{1}{r_1^2} \left(q_1(1 - \mu) + \frac{\mu}{r_2^2} \left(1 + \frac{A_2}{2r_2^2} \left(\frac{3\zeta^2}{r_2^2} \right) \right) \right) \right], \]

and

\[\mu = m_2/(m_1 + m_2) \leq \frac{1}{2}. \]
By substituting Equation 2 into Equation 1 and considering period and affected by A_2 and q_1. Our study suggests that the increasing value of A_2 produces the location of $L_{6,7}$ that are farther from orbital plane, while reducing q_1 produces locations closer to the orbital plane.

ACKNOWLEDGMENTS

I. N. H. are extremely grateful to the APRIM committee for supporting the travel grant. This work also has been supported by ITB Research and Innovation Grant No. 1063m/I1.C01.2/PL/2014 and Faculty of Mathematics and Natural Science, ITB.

REFERENCES

Figure 1. Relation between f and the position of L_6 (ξ_6 (left), ζ_6 (right)). $\mu = 0.3$, $A_2 = 0.02$, $q_1 = 0.99$, and $e = 0.1$

$\begin{align*}
\eta &= \sqrt{1 + \frac{3A_2}{2}}, \\
n_1 &= \sqrt{(\xi - \mu)^2 + \eta^2 + \zeta^2}, \\
n_2 &= \sqrt{(\xi - \mu + 1)^2 + \eta^2 + \zeta^2},
\end{align*}$

where f is true anomaly, e is the eccentricity, and r is the distance between primaries. ξ, η, ζ, ξ_0, η_0, and ζ_0 denote the partial derivatives with respect to f.

3. LOCATION OF OUT-OF-PLANE POINTS

The locations of $L_{6,7}$ can be obtained by imposing conditions as follow:

$$\begin{align*}
\dot{\xi} &= \dot{\eta} = \dot{\zeta} = 0, \\
\dot{\xi}_0 &= \dot{\eta}_0 = 0, \\
\dot{\zeta}_0 &= 0.
\end{align*}$$

By substituting Equation 2 into Equation 1 and considering $n_1^2 = 1 + 3A_2$ and $n_2^2 = 3A_2$ we obtain

$$\begin{align*}
\xi_0 &= \frac{(\mu - 1)}{n^2} \left[\frac{\mu}{3\sqrt{3}A_2^2} + \frac{q_1}{3\sqrt{3}A_2^2} \right], \\
\eta_0 &= \pm \sqrt{3A_2} \left[\frac{\mu}{3\sqrt{3}A_2^2} + \frac{q_1}{3\sqrt{3}A_2^2} \right], \\
\zeta_0 &= -\frac{6\sqrt{3}A_2^{3/2}(\mu - 1)q_1}{5\mu(3A_2^2 + 1)^{3/2}} + 1 \right]^{1/2},
\end{align*}$$

with $(\xi_0, +\eta_0)$ the position of L_6 and $(\xi_0, -\eta_0)$ the position of L_7. We determine that the existence of f in Equation 3 makes the locations of $L_{6,7}$ in ER3BP periodic. Equation 3 also shows that the locations of $L_{6,7}$ are affected by q_1 and A_2. An increasing value of A_2 produces locations of $L_{6,7}$ that are farther from the orbital plane, while reducing q_1 produces locations closer to the orbital plane.

Figure 2. Position of L_6 (ξ_6, ζ_6) as a function of f, with $\mu = 0.3$, $q_1 = 0.99$, $e = 0.1$, and A_2: 0.0198 (•), 0.0199 (●), and 0.0200 (●).

Figure 3. The position of L_6 (ξ_0, ζ_0) as a function of f, with $\mu = 0.3$, $q_1 = 0.99$, $e = 0.1$, and A_2: 0.0198 (•), 0.0199 (●), and 0.0200 (●).