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ABSTRACT

We first deduce a uniform formula forthe Fermi energy of degenerate and relativistic electrons in the
weak-magnetic field approximation. Then we obtain an expression of the special solution for the electron
Fermi energy through this formula, and express the electron Fermi energy as a function of electron fraction
and matter density. Our method is universally suitable for relativistic electron- matter regions in neutron
stars in the weak-magnetic field approximation.
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1. INTRODUCTION

Pulsars are commonly recognized as magnetized neu-
tron stars (NSs), but sometimes have been argued to be
quark stars (e.g., Xu 2007; Lai et al. 2013). For com-
pletely degenerate (T → 0, i.e., µ/kT → ∞, and rela-
tivistic electrons in equilibrium, the distribution func-
tion f(Ee) can be expressed as

f(Ee) =
1

Exp[(Ee − µe)/kT ] + 1
, (1)

where the sign + refers to Fermi-Dirac statistics, k
represents Boltzmann’s constant; and µe is the elec-
tron chemical potential, also called the electron Fermi
energy, EF(e)); when Ee ≤ EF(e), f(Ee) = 1; when
Ee > EF(e), f(Ee) = 0. The electron fraction is the
average electron number per baryon, and defined as
Ye = ne/nB , where ne and nB are electron number
density and baryon number density, respectively. The
electron fraction and the Fermi energy of relativistic
electrons in NSs are two important physical parameters
directly influencing weak-interaction processes includ-
ing MURCA reactions, electron capture (e.g., Gao et
al., 2011a, 2011b; Liu, 2013; Wang et al., 2012) and so
forth. This influence will change the intrinsic equations
of states, interior structure and heat evolution of a NS,
and even affect large scale properties of the star. The ef-
fects of a superhigh magnetic field B∗ � 1 (B∗ = B/Bcr

and Bcr = 4.414×1013 G is the electron critical field) on
the equilibrium composition of a NS have been shown
in detail in our previous studies (e.g., Gao et al., 2012a,
2012b, 2013, 2014). It is well known that determining
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the Fermi energy of electrons in different matter-density
regions in a NS is very complicated. Here we will present
a simple and reliable way to get values for relativistic
electrons in a NS in the “weak-magnetic field approxi-
mation” B∗ � 1.

The remainder of this paper is organized as follows:
in Section 2, we will deduce a general formula for the
electron Fermi energy, EF (e), which is suitable for rel-
ativistic matter regions (ρ ≥ 107 g cm−3) in the “weak-
magnetic field approximation”, and will present a spe-
cial solution of EF (e); in Section 3, we will simulate Ye
and EF (e) in the interior of a NS, and finally we give a
summary in Section 5.

2. DEDUCTIONS OF FORMULAE

According to statistical physics, the microscopic
state number in a 6-dimension phase-space element
dxdydzdpxdpydpz is dxdydzdpxdpydpz/h

3, where h is
Plank’s constant. The electron Fermi energy EF(e) has
the simple form

E2
F(e) = p2F(e)c2 +m2

ec
4 , (2)

with pF(e) being the electron Fermi momentum. In the
“weak-magnetic field approximation”, the microscopic
state number of electrons, Npha, can be calculated by

Npha = ne =
g

h3

∫ pF(e)

0

4πp2dp =
8π

3h3
p3F(e). (3)

For the convenience of calculations, we introduce a di-
mensionless momentum of electrons, xe = pF(e)/mec.
According to Pauli’s exclusion principle, electron num-
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ber density ne is equal to its energy state density,

ne = Npha =
1

3π2λ3e
x3e , (4)

where λe/mec is the Compton wavelength of an electron.
The average mass of a baryon, mB is defined as

mB ≡
1

n

∑
i

nimi =

∑
i nimi∑
i niAi

, (5)

with Ai the baryon number of species i. In the interior
of a NS, the relation of mB ≡ mu ≡ 1.6606×10−24 g al-
ways holds, where mu is the mass of an atom. Thus, the
matter density, ρ, can be expressed as:

ρ = nBmB =
nemB

Ye
, (6)

Combining Eq.(4) and Eq.(6), we get

xe = (
3π2λ3e
mu

Yeρ)
1
3 . (7)

Inserting λe = 3.8614 × 10−11 cm and mB ≡ 1.6606 ×
10−24 g into Eq.(7), we get

xe = 1.0088× 10−2(Yeρ)
1
3 , (8)

where ρ in units of g cm3. Utilizing the relation of µe =
mB

muYe
= 1

Ye
, Eq.(6) is rewritten as

ρ = µemune = 0.97395× 106
x3e
Ye
, (9)

in units of g cm−3, where µe is the average molecular
weight of electrons. Combining Eq.(2) with Eqs.(8) and
(9), we obtain a general formula for the electron Fermi
energy, EF (e),

EF(e) = [1 + 1.018× 10−4(ρYe)
2
3 ]

1
2 × 0.511 MeV. (10)

The formula above is be approximately suitable for
relativistic matter regions (ρ ≥ 107 g cm−3) over the
whole interior of a NS in the “weak-magnetic field ap-
proximation”. In the case of 0.5 ρ0 ≤ ρ ≤ 2ρ0, elec-
trons are relativistic, and neutrons and protons are non-
relativistic. Shapiro & Teukolsky (1983) gave an expres-
sions for Ye and EF (e) as follows:

Ye ≈
ne
nn
≈ 0.005647× (

ρ

ρ0
). (11)

EF(e) = 60× (
ρ

ρ0
)2/3 (MeV). (12)

Now, we give a simple proof for Eq.(12) using Eq.(10).
Inserting Eq.(11) into Eq.(10) yields

EF(e) = [1 + 1.018× 10−4(ρ× 0.005647

×(
ρ

ρ0
))2/3]1/2 × 0.511 MeV

= [1 + 1.018× 10−4(2.8× 1014 × 0.005647

×(
ρ

ρ0
))4/3]1/2 × 0.511 MeV

= [1 + 1.018× 10−4(1.58116× 1012)2/3]1/2

×(
ρ

ρ0
)2/3 × 0.511 MeV = 60× (

ρ

ρ0
)2/3 MeV.(13)

Table 1
Values of Ye, ρm, and EF(e) in BPS model below

neutron drip.

Nuclei Ye ρ†m
∆ρ
ρ

EF (e) E∗F (e)

(g cm−3) (%) (MeV) (MeV)

56
26Fe 0.4643 8.1×106 2.9 0.95 0.96
62
28Ni 0.4516 2.7×108 3.1 2.60 2.61
64
28Ni 0.4375 1.2×109 7.9 4.20 4.19
84
34Se 0.4048 8.2×109 3.5 7.70 7.71
82
32Ge 0.3902 2.2×1010 3.8 10.60 10.57
80
30Zn 0.3750 5.91×1010 4.1 13.60 13.52
78
28Ni 0.3590 8.21×1010 4.6 20.0 19.90
76
26Fe 0.3421 1.8×1011 2.2 20.20 20.37
124
42 Mo 0.3387 1.9×1011 3.1 20.50 20.67
122
40 Zr 0.3279 2.7×1011 3.3 22.90 22.98
120
38 Sr 0.3167 3.7×1011 3.5 25.2 25.23
118
36 Kr 0.3051 4.3×1011 −−− 26.20 26.20

Apart from column 6, all the data in this Table are cited from
Baym, Pethick & Sutherland, 1971.
∗ Calculated by our Fermi energy special solution of Eq.(13).
† The maximum equilibrium density at which the nuclide is
present.

The above proof indicates that Eq.(10) is a good ap-
proximate expression. If we insert Eq.(11) into Eq.(12),
we can derive a special solution of the Fermi energy of
relativistic electrons in the “weak-magnetic field approx-
imation”, a simple deduction is given as follows:

EF(e) = 60× (
ρ

ρ0
)1/3(

ρ

ρ0
)1/3

= 60× (
ρ

ρ0
)1/3(

ρ0Ye

0.005647

ρ0
)1/3

= 60× (
ρ

ρ0
)1/3(

Ye
0.005647

)1/3 (MeV). (14)

It is worth emphasizing that, unlike the general expres-
sion of EF (e) (see Eq.(10)), there could be several spe-
cial solutions of Fermi energy of relativistic electrons in
the “weak-magnetic field approximation” because there
are several (or more) known and accepted values of
EF (e) (e.g., Baym, Pethick & Sutherland, 1971; Baym,
Bethe & Pethick, 1971; Canuto, 1974; Haensel, Potekhin
& Yakovlev, 2007). In this paper, we introduce a special
solution of EF (e) for the convenience of calculations and
numerical simulations in the later subsections.

2.1. Applications of Special Solution

Considering shell effects on the binding energy of a given
nucleus, Salpeter (1961) first calculated the composition
and EOS in the region of 107−3.4×1011 g cm−3 . By in-
troducing the lattice energy, Baym, Pethick and Suther-
land (hereafter BPS) improved on Salpeter’s treatment,
and described the nuclear composition and EOS for cat-
alyzed matter in complete thermodynamic equilibrium
below the neutron drop ρd ∼ 4.4×1011 g cm−3. Accord-
ing to the BPS model, the total matter energy density
ε and the total matter pressure P are given by

ε = εN + εe + εL,
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Figure 1. Numerically simulating Ye in BPS model.

P = Pe + PL = Pe +
1

3
εL, (15)

respectively, where εN is the mass-energy of nuclei in a
unit volume, εe the free electron energy including the
rest mass of electrons in a unit volume, εL is the bcc
Coulomb lattice energy in a unit volume, Pe the elec-
tron pressure, and PL the lattice pressure, respectively.
The value of electron Fermi energy EF (e) is obtained by
solving the following differential equation:

EF(e) = µe =
∂εe
∂ne

=
∂

∂ne
(neEe) , (16)

where Ee is the free energy of an electron. For the spe-
cific equilibrium nuclei (A,Z) in BPS model, the values
of quantities Ye, ρm, and EF(e) are tabulated in Table
1.

Note that, for a given nucleus with proton number Z
and nucleon number A, the relation of Ye = Yp = Z/A
always approximately holds in the BPS model, where Yp
is the proton fraction. From Table 1, it is obvious that
the electron fraction Ye decreases with matter density
ρ, and the decrease in Ye is caused by an increase in the
ratio of Z/A in nuclei in the BPS model. In order to
compare the method of calculating EF (e) in the BPS
model with our Fermi energy solution, we add column
6 in Table 1. Our calculation results are almost consis-
tent with those of the BPS model, which can be seen by
comparing the data of column 5 with the data of column
6 in the Table. Based on this, we obtain an analytical
expression for the electron fraction Ye and matter den-
sity ρ in the BPS model by numerically simulation, as
shown in Figure 1.

Ye = 0.464− 2.46× 10−6eLog10ρ + 9.2× 10−12e2Log10ρ.
(17)

In Figure 1, circles denote the values of Ye and ρ of
each individual nuclide in BPS model. Inserting Eq.(16)
into the special solution of Eq.(13), we can calculate the
value of EF (e) for any given matter density in the BPS
model. Combining Table 1 with Eq.(13) and Eq.(16), we
plot the diagram of EF (e) as a continuous function of
matter density ρ in the BPS model, as shown in Figure
2. In Figure 2, circles denote the values of Ye and ρ
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Figure 2. Numerically simulating EF (e) in BPS model.
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of each individual nuclide in BPS model, circles denote
the values of EF (e) and ρ of each individual nuclide
in the BPS model. From Figure 2, it is obvious that
the electron Fermi energy EF (e) decreases with matter
density ρ, and the increase in EF (e) is caused by an
increase in ne in the BPS model.

In order to obtain the value of the Fermi energy of
electrons given any density in the interior of a NS, we
obtain a one to one relationship between the electron
fraction and matter density at different depths in a NS
by using reliable equations of state (EOSs) and numer-
ical simulations, as shown in Figure 3.

When numerically simulating Ye and ρ in Figure
3, we chose a BPS model for the outer crust region
(ρ ∼(8.1×106−4.3×1011) g cm−3), the BBP (Baym,
Bethe & Pethick 1971) model for the lower density re-
gion of the inner crust (ρ ∼(4.3×1011−4.54× 1012) g
cm−3), an ideal mixed model 1 for the higher density
region of the inner crust (ρ ∼(4.54×1012−1.32×1014) g
cm−3), the ST-83 model 2 (Shapiro & Teukolsky, 1983)
for the outer core region (ρ ∼(1.32×106−8.2×1014) g
cm−3), and the “n − p − e − µ” model 3 for the inner
core region (ρ ∼(8.2×106−9.5×1015) g cm−3). In ad-

1The matter is composed of nuclei and neutron gas
2The matter is composed of neutrons, protons and electrons
3The matter is composed of neutrons, protons, electrons and
muons
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Figure 4. The relation of EF (e) and ne for relativistic matter
regions (ρ � 107 g cm−3) in the whole interior of a NS in
the “weak-magnetic field approximation”.

dition, inserting Eq.(4) into Eq.(2) gives the relation of
the electron Fermi energy EF (e) and electron number
density ne for relativistic matter regions over the whole
interior of a NS in the “weak-magnetic field approxima-
tion”,

EF(e) = mec
2(1 + x2e)

1/2 ≈ mec
2xe

= mec
2(ne3π

2λ3e)
1/3

= 6.121× 10−11n1/3e (MeV), (18)

where the approximate relations of ρ � 107 g cm−3

and xe � 1 are used. We also numerically simulate the
relation of EF (e) and ne for relativistic matter regions
(ρ�107 g cm−3) over the whole interior of a NS in the
“weak-magnetic field approximation”.

Since the electron Fermi energy EF(e) increases with
the electron number density ne, and ne increases with
matter density ρ, EF(e) also increases with matter den-
sity ρ over the whole interior of a NS. In particular, if the
value of Ye in the inner core of a young NS exceeds 1/9,
the threshold Ye of direct URCA reactions (DURCA),
then DURCA would occur, and strong neutrino emis-
sions would result in the quick cooling of a NS. Thus,
the results of this paper will provide some reference val-
ues for the future study of the thermal evolution inside
a NS.

3. SUMMARY

In this paper, we deduced a uniform formula for the
Fermi energy of relativistic electrons in the weak-
magnetic field approximation, and gave a special solu-
tion of electron Fermi energy. Compared with previous
studies of the electron Fermi energy in other models,
our method of calculating EF (e) is simpler more con-
venient, and can be universally suitable for the rela-
tivistic electron matter-region in neutron stars in the
weak-magnetic field approximation.
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